Bayesian Spatial-Temporal Modeling of Ecological Zero-Inflated Count Data
نویسندگان
چکیده
منابع مشابه
Bayesian Spatial-temporal Modeling of Ecological Zero-inflated Count Data.
A Bayesian hierarchical model is developed for count data with spatial and temporal correlations as well as excessive zeros, uneven sampling intensities, and inference on missing spots. Our contribution is to develop a model on zero-inflated count data that provides flexibility in modeling spatial patterns in a dynamic manner and also improves the computational efficiency via dimension reductio...
متن کاملModeling zero-inflated count data with glmmTMB
Ecological phenomena are often measured in the form of count data. These data can be analyzed using generalized linear mixed models (GLMMs) when observations are correlated in ways that require random effects. However, count data are often zero-inflated, containing more zeros than would be expected from the standard error distributions used in GLMMs, e.g., parasite counts may be exactly zero fo...
متن کاملGeneralized Estimating Equations for Zero-Inflated Spatial Count Data
We consolidate the zero-inflated Poisson model for count data with excess zeros (Lambert, 1992) and the two-component model approach for serial correlation among repeated observations (Dobbie and Welsh, 2001) for spatial count data. This concurrently addresses the problem of overdispersion and distinguishes zeros that arise due to random sampling from those that arise due to inherent characteri...
متن کاملModeling Zero-Inflated Count Data with Underdispersion and Overdispersion
A common problem in modeling count data is underdispersion or overdispersion. This paper discusses the distinction between overdispersion due to excess zeros and overdispersion due to values that are greater than 0. It shows how to use exploratory data analysis to determine the dispersion patterns and that the dispersion patterns can change depending on the predictors and the subpopulation that...
متن کاملSemiparametric analysis of zero-inflated count data.
Medical and public health research often involve the analysis of count data that exhibit a substantially large proportion of zeros, such as the number of heart attacks and the number of days of missed primary activities in a given period. A zero-inflated Poisson regression model, which hypothesizes a two-point heterogeneity in the population characterized by a binary random effect, is generally...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistica Sinica
سال: 2014
ISSN: 1017-0405
DOI: 10.5705/ss.2013.212w